|
|
|
新三角高程测量法基本原理及应用介绍 |
|
时间日期:2012-7-9 已被阅读次:[7930] |
佛山市佛利建设工程有限公司 吴立皇
[摘 要] 传统的高程测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是较高,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。但精度较低,且每次测量都得量取仪器高,棱镜高。麻烦而且增加了误差来源。新三角测量法正好弥补了上述两种方法的缺点,具有施测速度较快、精度较高、任意置站的特点。更加适合在放线任务大,精度要求较高,地形变化大的堤围施工中应用。 [关键词] 新三角高程测量法,堤围测量施工
工程概况 樵桑联围是在历年樵桑联围三水段加固建设的基础上,按照五十年一遇设计洪水位加2.0m超高的2级堤防标准加高和培厚堤身,完成堤顶道路硬底化,对一些年久失修的穿堤涵闸进行加固或重建,对一些历史险工险段进行加固处理,配套完善上堤路及限位墩、增设防汛备料池等设施,使之成为较完善的防洪工程体系。本工程全长11.265km,总工期95日历天,在2010年9月开工,2010年12月完成。突出特点是线路长,工期紧,工程量多,测量放线任务大,测量精度要求较高,高程的控制尤其重要。为了保障施工质量、进度及精度的要求,我们采用了新三角高程测量法来满足工程的需要。
一、三角高程测量的传统方法 设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA+HAB得到B点的高程HB。图中:D为A、B两点间的水平距离 а为在A点观测B点时的垂直角 i为测站点的仪器高,t为棱镜高 HA为A点高程,HB为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=Dtan а) 首先假设A,B两点相距不太远,可以将水准面看成水准面,也不考虑大气折光的影响。为了确定高差hAB,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D,则hAB=V+i-t 故 HB=HA+Dtan а+i-t (1) 这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B两点间的距离较短时,才比较准确。当A,B两点距离较远时,就必须考虑地球弯曲和大气折光的影响了。这里不叙述如何进行球差和气差的改正。从传统的三角高程测量方法中可以看出,它备以下两个特点: 1、 全站仪必须架设在已知高程点上 2、 要测出待测点的高程,必须量取仪器高和棱镜高。
二、新三角高程测量的方法 如果能将全站仪象水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图一,假设B点的高程已知,A点的高程为未知,这里要通过全站仪测定其它待测点的高程。首先由(1)式可知: HA=HB-(Dtan а+i-t) (2) 上式除了Dtanа即V的值可以用仪器直接测出外,i,t都是未知的。但有一点可以确定即仪器一旦置好,i值也将随之不变,同时选取跟踪杆作为反射棱镜,假定t值也固定不变。从(2)可知: HA+i-t=HB-Dtan а=W (3) 由(3)可知,基于上面的假设,HA+i-t在任一测站上也是固定不变的.而且可以计算出它的值W。 新三角高程测量的方法操作过程如下: 1、 仪器任一置点,但所选点位要求能和已知高程点通视。 2、 用仪器照准已知高程点,测出V的值,并算出W的值。(此时与仪器高程测定有关的常数如测站点高程,仪器高,棱镜高均为任一值。施测前不必设定。) 3、 将仪器测站点高程重新设定为W,仪器高和棱镜高设为0即可。 4、 照准待测点测出其高程。 下面从理论上分析一下这种方法是否正确。 结合(1),(3) HB′=W+D′tan а′ (4) HB′为待测点的高程 W为测站中设定的测站点高程 D′为测站点到待测点的水平距离 а′为测站点到待测点的观测垂直角 从(4)可知,不同待测点的高程随着测站点到其的水平距离或观测垂直角的变化而改变。 将(3)代入(4)可知:HB′=HA+i-t+D′tan а′ (5) 按三角高程测量原理可知 HB′=W+D′tan а′+i′-t′ (6) 将(3)代入(6)可知: HB′=HA+i-t+D′tan а′+i′-t′ (7) 这里i′,t′为0,所以: HB′=HA+i-t+D′tan а′ (8) 由(5),(8)可知,两种方法测出的待测点高程在理论上是一致的。也就是说我们采取这种方法进行三角高程测量是正确的。综上所述:将全站仪任一置点,同时不量取仪器高,棱镜高。仍然可以测出待测点的高程。测出的结果从理论上分析比传统的三角高程测量精度更高,因为它减少了误差来源。整个过程不必用钢尺量取仪器高,棱镜高,也就减少了这方面造成的误差。同时需要指出的是,在实际测量中,棱镜高还可以根据实际情况改变,只要记录下相对于初值t增大或减小的数值,就可在测量的基础上计算出待测点的实际高程。
三、结束语 工程测量放样的进度及好坏是影响工程能否按期完工和保障施工质量的重要环节。以前用水准测量1km的堤顶的高程要2天,现用新三角测量只需1天就可以基本完成。说明新三角高程测量法不但能满足精度较高的测量放线要求,还比传统的水准测量施测速度更快,均能满足施工进度要求,更加适合地形起伏大的堤围工程。
参考文献 [1]陈斌.《浅谈新技术在工程测量中的应用》[J].科学之友:下旬,2006(12)。 [2]《水电水利工程施工测量规范》DL/T5173-2003
|
|
|
|
|
|
|